
ASN.1 for More Effective
ITS Standards

Alessandro Triglia
sandro@oss.com
OSS Nokalva, Inc.

ISO TC 204
Prague 2011-04-13

ASN.1
 ASN.1 = Abstract Syntax Notation One
 Family of international standards

 jointly developed and published by ISO/IEC and
ITU-T

 Originally developed in the 1980’s...
 ...but still alive and well, and still being maintained

 Used in several industries
 mainly, but not only, telecommunications

ASN.1
 ASN.1 is:

1) a formal language for specifying the logical structure
of data that is to be exchanged between two
endpoints
 independent of hardware platform, operating system,

programming language, local representation, etc.

2) standard sets of rules for encoding instances of
logical data structures specified in ASN.1 notation
 for the purpose of transmission

ASN.1 notation
Examples from CALM/ETSI ITS standards (1/3)

FNTPbasicNPDU ::= SEQUENCE {
header FNTPbasicHeader,
payload FNTPpayload

}

FNTPbasicHeader ::= SEQUENCE {
sourcePort PortNumber,
destinationPort PortNumber

}

PortNumber ::= INTEGER (0..65535)

FNTPpayload ::= OCTET STRING

ITSapplRq ::= SEQUENCE OF ITSapplRequirements

ITSapplRequirements::= CHOICE {
mediumCost [0] MediumCost,
connectionCost [1] ConnectionCost,
internet [2] BOOLEAN,
adhoc [3] BOOLEAN,
latency [4] ITSlatency,
responsiveness [5] Responsiveness,
directionality [6] Directionality,
directivity [7] Directivity,
serviceArea [8] ServiceArea,
commRange [9] CommRange,
bandwidth [10] Bandwidth,
dataRateNWreq [11] DataRate,
targetArea [12] TargetArea,
accessTech [13] MedType,
noReq [255] NULL

}

ASN.1 notation
Examples from CALM/ETSI ITS standards (2/3)

MprotocolType ::= INTEGER {
unknown (0), -- unknown networking protocol
any (1), -- any networking protocol
iumc (2) -- Inter Unit Management Communication

-- Inter-ITS-SCU communication
} (0..255)

ITSlatency ::= ENUMERATED {
unknown (0), -- unknown latency
any (1), -- any latency - not further specified
ms (2), -- response within milliseconds
ms10 (3), -- response within 10s of ms
ms100 (4), -- response within 100s of ms
sec (5), -- response within seconds
sec10 (6), -- response within 10s of seconds
min (7), -- response within minutes
min10 (8) -- response within 10s of minutes

}

ASN.1 notation
Examples from CALM/ETSI ITS standards (3/3)

Principles and Benefits of ASN.1
 Separation of concerns

 The description of the logical structure of a message is kept
completely separate from the details of the encoding

 Message descriptions are machine-processable
 This enables the creation and use of software development tools

and testing tools that can read and understand the formal
definitions

 Encodings are standardized
 The problem of specifying detailed encodings and the problem of

encoding/decoding messages and their fields do not need to be
addressed again and again

 Extensibility
 It is possible to extend a message description in controlled ways

while ensuring backward- and forward-compatibility between
implementations of different versions of the message

Principles and Benefits of ASN.1

 Separation of concerns (1/3)

 The description of the logical structure of a message
is kept completely separate from the details of the
encoding

 A protocol designer can focus on describing the
essential (abstract) properties of the data without
being distracted by encoding details
 Examples: byte order (endianness); how many bits should be

assigned to each field; what binary value should be assigned
to each option; how to indicate the presence or absence of
an optional field; how to align (and whether to align) each
field with respect to byte or word boundaries; inclusion of
padding bits; and so on

Principles and Benefits of ASN.1

 Separation of concerns (2/3)

 Message specifications are concise
 they describe only the logical structure of the data and its

most relevant properties
 essential semantic links to the protocol specification can be

expressed through a careful choice of names
 comments can be included to provide explanations,

references, and additional requirements as needed

 A reader of a specification that is moderately familiar
with ASN.1 will quickly grasp the structure of the data
and the properties that are most relevant to the logic
of the protocol
 The logical structure stands out

Principles and Benefits of ASN.1

 Separation of concerns (3/3)

 Analogy with 3rd generation programming languages
 A messaging specification in ASN.1 notation is analogous to

“source code”
 The standard encodings are analogous to “machine code”
 The same source code can be rendered into machine code in

different ways
 Different processors, kinds of optimizations, sets of runtime

requirements

 The “meaning” of the source code is largely independent of
the processors on which the machine code will be executed

 The majority of the people who write and read source code
are not interested in the details of the machine code
 But a few of them are

Principles and Benefits of ASN.1

 Message descriptions are machine-processable
(1/3)

 This enables the creation and use of software
development tools and testing tools that can read and
understand the formal definitions

 A software development tool can, given a message
specification, generate source code,
encoder/decoders, and other artifacts that will
facilitate and accelerate the implementation work

 A testing tool can process an ASN.1 specification and
execute test cases against an implementation
 There should be no need to hand-write programs that

encode and parse messages in support of testing

Principles and Benefits of ASN.1

 Message descriptions are machine-processable
(2/3)

 ASN.1 is a rigorous formal language; this ensures that
any definition that is syntactically correct will be
unambiguous
 In ASN.1 one cannot define the same entity multiple times

by mistake, or forget to define a type used in other types, or
include type definitions having insufficient or inconsistent
information, or create a type definition that will not be
encodable

Principles and Benefits of ASN.1

 Message descriptions are machine-processable
(3/3)

 A protocol designer can use an ASN.1 tool to verify
the syntactic correctness and completeness of a
specification at any stage of development
 Certain errors such as missing or syntactically incomplete

type definitions can be caught early in the standardization
process

 A protocol designer or implementer can use an ASN.1
tool to create sample instances of messages
conforming to a given specification
 This facilitates testing and debugging

Principles and Benefits of ASN.1

 Encodings are standardized (1/2)

 The problem of specifying detailed encodings and the
problem of encoding/decoding messages and their
fields do not need to be addressed again and again

 Several standard sets of encoding rules for ASN.1 are
available, each with different characteristics:
 BER – Basic Encoding Rules
 DER – Distinguished Encoding Rules
 PER – Packed Encoding Rules

 PER Aligned
 PER Unaligned

 XER – XML Encoding Rules

Principles and Benefits of ASN.1
 Encodings are standardized (2/2)

 Typically, a protocol specification mandates one
particular standard set of encoding rules to be used
for that protocol
 Common choices are BER (some earlier standards), DER

(security standards), PER Aligned (some telecom standards),
and PER Unaligned (aviation standards, telecom standards)

 Someone interested in the details of the encodings for
a given specification can turn his attention to the
standard encoding rules
 A protocol designer or implementer may need to do this

occasionally
 In most practical cases this is not a difficult task, but it does

require some knowledge of the encoding rules
 Encoding concerns remain separate from logical structure

Principles and Benefits of ASN.1
 Extensibility

 It is possible to extend a message description in
controlled ways while ensuring backward- and
forward-compatibility between different version
implementations

 A version-2 receiver will be able to handle any
message created by a version-1 sender

 A version-1 receiver will be able to handle any
message created by a version-2 sender (possibly
ignoring any parts related to extensions that were
defined after version 1)
 Here “1” and “2” mean any m, n where m < n

 This mechanism works with any standard encoding
rules

ASN.1 standards

 Three sets of standards:
 ASN.1 notation (X.680, X.681, X.682, X.683)

 a formal language for the definition of messages

 Encoding rules
 BER – Basic Encoding Rules (X.690)
 DER – Distinguished Encoding Rules (X.690)
 PER – Packed Encoding Rules (X.691)
 XER – XML Encoding Rules (X.693)
 ...

 Other ASN.1 standards
 Mapping from XML Schema to ASN.1 (X.694)
 Fast Infoset (X.891)
 Fast Web Services (X.892)

Uses of ASN.1
 Some traditional applications of ASN.1:

 Signaling standards for the public switched telephone network
(SS7 family)

 Network management standards (SNMP, CMIP)
 Directory standards (X.500 family, LDAP)
 Public Key Infrastructure standards (X.509, etc.)
 PBX control (CSTA)
 IP-based Videoconferencing (H.323 family)

 Some more recent applications:
 Aeronautical Telecommunication Network
 Biometrics (BIP, CBEFF, ACBio)
 Intelligent transportation (CALM, SAE J2735)
 Cellular telephony (GSM, GPRS/EDGE, UMTS, LTE, IEEE 802.16m)

Developing an application
that uses an ASN.1 specification

1. The application developer submits the ASN.1
specification to an ASN.1 compiler that is part of an
ASN.1 toolkit

2. The ASN.1 compiler generates some source code in a
programming language (C, C++, Java, etc.)

3. An encoder/decoder for the designated set of ASN.1
encoding rules may either:
• be an integral part of the source code generated by the ASN.1

compiler from the given ASN.1 schema; or
• be provided as a separate, pre-built component, typically a

library that is part of the ASN.1 toolkit
4. The application developer integrates the generated

source code and the encoder/decoder library into his
application

5. The resulting application is typically able to create,
encode, send, receive, decode, and process messages
conforming to the ASN.1 specification

At runtime
1. The sending application creates a message conforming

to a certain message type within the ASN.1 specification
• the message is represented in a data structure that is

appropriate to the programming language in use (e.g., a Java
class or a C struct)

2. The sending application encodes the message using the
designated set of ASN.1 encoding rules
• BER – DER – PER – XER ...

3. The encoded message is transferred from the sending
endpoint to the receiving endpoint

4. The receiving application decodes the encoded message
using the designated set of ASN.1 encoding rules
• the message is now represented in a data structure appropriate

to the programming language in use
5. The receiving application processes the message

Boolean types
Characteristics

 A component whose type is BOOLEAN (or a user-defined
type derived from BOOLEAN) may take as its value one
of the values FALSE and TRUE

BOOLEAN
Usage examples from CALM/ETSI ITS standards

ITSapplRequirements ::= CHOICE {
..........................

internet [2] BOOLEAN, -- Internet access is needed
adhoc [3] BOOLEAN, -- ad-hoc access is needed
..........................

}

VciCmd ::= SEQUENCE OF SEQUENCE {
fill BIT STRING (SIZE(6)) DEFAULT '111111'B,
vciRef SerialNumberCI,
peerMAC MACaddress OPTIONAL,
alive BOOLEAN OPTIONAL

}

Integer types
Characteristics (1/2)

 A component whose type is INTEGER (or a user-defined
type derived from INTEGER) may take as its value any
integer from a certain set
 If the integer type has no constraints, the permitted value set is

the range [–infinity..+infinity]
 A permitted value set can be specified, for example, by including

a value range constraint, as follows:
A ::= INTEGER (0..255)

B ::= INTEGER (0..65535)

C ::= INTEGER (-100000..100000)

D ::= INTEGER (1..8)

MessageCounter ::= INTEGER (0..31)

Integer types
Characteristics (2/2)

 It is possible to associate names with some of the values
of a user-defined integer type, as in the following
example:

TprotocolType ::= INTEGER {
unknown (0),
any (1),
tcp (2),
udp (3),
btp (64) } (0..255)

 These names must begin with a lowercase letter
 The value-range constraint should still be included in the

definition; it is not implied by the set of numbers listed

INTEGER
Usage examples from CALM/ETSI ITS standards

PortNumber ::= INTEGER (0..65535)

FNTPbasicHeader ::= SEQUENCE {
sourcePort PortNumber,
destinationPort PortNumber

}

DirVar ::= SEQUENCE {
bsAzimuth INTEGER (-256..255), -- -180..+180
bsElevation INTEGER (-128..127), -- -90..+90
openHorizontal INTEGER (0..255), -- 0..180
openVertical INTEGER (0..255) -- 0..180

}

Enumerated types
Characteristics (1/2)

 There are no built-in enumerated types
 The ENUMERATED keyword is used to create a (user-

defined) enumerated type, as follows:
A ::= ENUMERATED { red, yellow, green }

DirIndicator ::= ENUMERATED { uplink, downlink }

 A component whose type is an enumerated type may
take as its value any one of the names listed in the
definition of the enumerated type
 These names must begin with a lowercase letter

Enumerated types
Characteristics (2/2)

 It is possible to associate numbers with some of the
names present in the definition of an enumerated type,
as follows:
A ::= ENUMERATED { red (3), yellow (2), green (1) }

 This feature exists for historical reasons and makes sense only
for a specification designed to be encoded in BER or DER (the
numbers are transmitted in BER and DER). In PER, the numbers
are taken into account only for the purpose of determining the
order of the enumerations. In the above example, the encodings
would not change if the number “3” were replaced by a “15”,
but would change if the number “2” were replaced by a “4”.

ENUMERATED
Usage examples from CALM/ETSI ITS standards

DirIndicator ::= ENUMERATED { uplink, downlink }

ITSlatency ::= ENUMERATED {
unknown (0), -- unknown latency
any (1), -- any latency - not further specified
ms (2), -- response within milliseconds
ms10 (3), -- response within 10s of ms
..........................

}

MedUseObsTime ::= SEQUENCE {
value INTEGER (0..65535),
unit ENUMERATED {

microseconds (0),
milliseconds (1),
seconds (255) }

}

Bit string types
Characteristics (1/2)

 A component whose type is BIT STRING (or a user-
defined type derived from BIT STRING) takes as its
value a string of bits
 If the bit string type has no constraints, the string may have any

length from zero to infinity
 A fixed length for the bit string can be specified by including a

single-value size constraint, as follows:
A ::= BIT STRING (SIZE (8))

B ::= BIT STRING (SIZE (32))

 A range of permitted lengths for the bit string can be specified
by including a value-range size constraint, as follows:

C ::= BIT STRING (SIZE (0..255))

D ::= BIT STRING (SIZE (1..8))

Bit string types
Characteristics (2/2)

 It is possible to assign names to one or more bit
locations within a user-defined bit string type, as in the
following example (a simple bitmap):

NwSupport ::= BIT STRING {
fast (0),
ipv6 (1),
mail (2),
geo-routing (3) } (SIZE(8))

 These names must begin with a lowercase letter
 The size constraint should still be included in the definition,

since it is not implied by the bit locations listed
 The length of a bit string is an inherent part of its value,

and does not need to be expressed in a separate field
 For example, there is no need to include a “length” field before a

bit-string field

BIT STRING
Usage examples from CALM/ETSI ITS standards

MACAddress ::= BIT STRING (SIZE(48))

IN-SAPaddress ::= SEQUENCE {
sapRef INTEGER(0..64),
sapQualifier BIT STRING (SIZE(1)), -- ISO qualifier
sapFlag BIT STRING (SIZE(1)) -- C/R / I/G flag

}

Octet string types
Characteristics (1/2)

 A component whose type is OCTET STRING (or a user-
defined type derived from OCTET STRING) takes as its
value a string of octets
 If the octet string type has no constraints, the string may have

any length
 A fixed length for the octet string can be specified by including a

single-value size constraint, as follows:
A ::= OCTET STRING (SIZE(4))
IPv6Address ::= OCTET STRING (SIZE(16))

 A range of permitted lengths for the octet string can be specified
by including a value-range size constraint, as follows:

B ::= OCTET STRING (SIZE(0..255))
SMS ::= OCTET STRING (SIZE(1..140))

 The length of an octet string is an inherent part of its value,
and does not need to be expressed in a separate field

Octet string types
Characteristics (2/2)

 It is possible to specify that an octet string or bit string
type is required to contain the encoding of an instance
of a certain type, as follows:

Layer-1-Message ::= SEQUENCE {
..........................

payload OCTET STRING
(CONTAINING Layer-2-Message),

..........................

}

Layer-2-Message ::= CHOICE {
message1 Message1,
message2 Message2,

..........................

}

 First, an instance of the contained type will be encoded, and
then the octets that constitute its encoding will be used as the
value of the octet string component

 The contained type may be any built-in or user-defined type

OCTET STRING
Usage examples from CALM/ETSI ITS standards

SMS ::= OCTET STRING (SIZE(1..140))

IPv4Address ::= OCTET STRING (SIZE(4))

IPv6Address ::= OCTET STRING (SIZE(16))

UnitData ::= SEQUENCE {
sourceAddr Link-ID,
destAddr Link-ID,
data OCTET STRING,
priority UserPriority,
parameter OCTET STRING

}

Sequence types
Characteristics (1/2)

 The SEQUENCE keyword is used to create a (user-
defined) sequence type, as follows:

FNTPforwardingHeader ::= SEQUENCE {
forward FNTPforwardInfo,
hostITS-scuId ITS-scuId,
link Link-ID,
counter FNTPpacketCounter

}

 A component whose type is a sequence type takes as its
value an ordered list of values, each being a permitted
value of one of the components specified in the
definition of the sequence type, in the same order
 Each component type may be any built-in or user-defined type

Sequence types
Characteristics (2/2)

 Each component of a sequence type may be specified as
mandatory (by default), optional, or optional with a
default value, as follows:

IpService ::= SEQUENCE {
serviceID ITSaid,
serviceData OCTET STRING

(SIZE(0..noServiceDataOctets)) OPTIONAL,
ipInfo IpInfo,
sessionChannel INTEGER (1..noChannels) DEFAULT (1)

}

 The indication of whether each optional component is present or
absent in a sequence value is an inherent part of the sequence
value, and does not need to be expressed in a separate field
 For example, there is no need to include a presence “flag” field or “bitmap”

field before some optional components of a sequence

Choice types
Characteristics

 The CHOICE keyword is used to create a (user-defined)
choice type, as follows:
ServiceInfo ::= CHOICE {

nonipService [0] NonipSAMctx,
ipService [1] IpSAMctx

}

 A component whose type is a choice type takes as its
value a single component value, which must be a value
of one of the alternatives specified in the definition of
the choice type
 Each alternative type may be any built-in or user-defined type
 The indication of which alternative has been chosen in a choice

value is an inherent part of the choice value, and does not need
to be expressed in a separate field
 For example, there is no need to include an enumerated type before the

choice type

SEQUENCE, CHOICE
Usage examples from IEEE WirelessMAN-Advanced

HandoverReentry ::= SEQUENCE {
stidOrMacAddress CHOICE {

stidInfo SEQUENCE {
servingBsid BSID,
previousSTID STID

},
addressInfo CHOICE {

macAddress MACAddress,
currentSTID STID

}
},
akCount AKCount OPTIONAL,
fidList SEQUENCE (SIZE(0..15)) OF FidInfo OPTIONAL,
...

}

Sequence-of types
Characteristics

 The SEQUENCE OF keywords are used to create a (user-
defined) sequence-of type, as follows:

IntegerList ::= SEQUENCE OF INTEGER

 A component whose type is a sequence-of type takes as
its value an ordered list of component values, all of the
type specified in the definition of the sequence-of type
 The component type may be any built-in or user-defined type
 If the sequence-of type has no constraints, the lists may have

any length
 A fixed length for the lists can be specified by including a single-

value size constraint, as follows:
A ::= SEQUENCE (SIZE(16)) OF SEQUENCE { flag BOOLEAN }

 A range of permitted lengths for the lists can be specified by
including a value-range size constraint, as follows:
IntegerList ::= SEQUENCE (SIZE(0..1000)) OF INTEGER

SEQUENCE OF
Usage examples from CALM/ETSI ITS standards

ChannelList ::= SEQUENCE (SIZE(1..noChannels)) OF SessionChannel

IpServList ::= SEQUENCE (SIZE(1..noIpServices)) OF IpService

GCperiodCmd ::= SEQUENCE {
applicationID ApplicationID,
bcVCIs SEQUENCE OF LLserviceAddr,
gcInterval GcInterval,
priority UserPriority,
serviceDataReg ServiceDataReg

}

Monitor ::= SEQUENCE (SIZE(0..254)) OF SEQUENCE {
paramNo INTEGER(0..254),
active INTEGER{

stop (0),
start (255) } (0..255)

}

Null types
Characteristics

 A component whose type is NULL (or a user-defined
type derived from NULL) may only take as its value the
name NULL

 Null types are mostly useful as the types of alternatives
within choice types, as in the following example:
ITSapObMsgPort ::= CHOICE {

static [0] PortNumber,
dynamic [255] NULL

}

 Every choice value includes the indication of which alternative
has been chosen as well as the value of that alternative. In
some cases (as in the above example), the fact that a certain
alternative has been chosen is all one needs to know, and a null
type is adequate.

CHOICE , NULL
Usage examples from CALM/ETSI ITS standards

PduResponse ::= CHOICE {
alive [0] ITS-SCUalive,
mf-rcmd [1] MF-Command-confirm,
mf-rreq [2] MF-Request-confirm,
mn-rcmd [3] MN-Command-confirm,
mn-rreq [4] MN-Request-confirm,
mi-rcmd [5] MI-Command-confirm,
mi-rreq [6] MI-Request-confirm,
mi-rget [7] MI-Get-confirm,
mi-rset [8] MI-Set-confirm,
vCI-info [9] VCI-info-res,
vCI-update [10] NULL,
dL-UI-REQ [64] NULL,
dL-UI-IND [65] DL-Unitdata-indication

}

Other major ASN.1 types
 OBJECT IDENTIFIER

 A variable-length string of integers, used as an identifier with
global scope
 Example: 1.1.19785.0.257.8

 Each value identifies a node in a tree, which is a hierarchy of
registration authorities and numbers allocated by them

 REAL
 A floating-point number

 IA5String
 A US-ASCII character string (7-bit characters)

 UTF8String
 A Unicode character string in UTF-8 format

 TIME
 A variety of built-in types representing dates, times, and

durations

Extensibility
 Extensibility is a feature of ASN.1 that enables both

backward- and forward-compatibility between endpoints
implementing different versions of an ASN.1 specification

 Syntax: a “...” symbol (“extension marker”) included in
a certain position within a type definition makes the type
extensible

 There are rules that must be followed when extending a
type in a later version
 First rule: a type that is non-extensible in the very first version

cannot be made extensible in any subsequent version (i.e., an
extension marker may not be added where there was none in
the first version)

Extensibility
 Extensible integer types:

 In version 1: INTEGER (0..255, ...)
 In version 2: INTEGER (0..255, ..., 0..587)
 In version 3: INTEGER (0..255, ..., 0..587 | 0..15589)

 Extensible enumerated types:
 In version 1: ENUMERATED { red, white, ... }
 In version 2: ENUMERATED { red, white, ...,

grey, yellow }

 In version 3: ENUMERATED { red, white, ...,
grey, yellow, pink, black }

Extensibility
 Extensible bit string types:

 In version 1: BIT STRING (SIZE(16, ...))
 In version 2: BIT STRING (SIZE(16, ..., 24))
 In version 3: BIT STRING (SIZE(16, ..., 24 | 32))

 Extensible octet string types:
 In version 1: OCTET STRING (SIZE(4..8, ...))
 In version 2: OCTET STRING (SIZE(4..8, ..., 24))
 In version 3: OCTET STRING (SIZE(4..8, ..., 24 | 32))

 Extensible sequence-of types:
 In v.1: SEQUENCE (SIZE(0..15, ...))

OF SomeType

 In v.2: SEQUENCE (SIZE(0..15, ..., 0..255))
OF SomeType

 In v.3: SEQUENCE (SIZE(0..15, ..., 0..255 | 0..4095))
OF SomeType

Extensibility
 Extensible sequence types:

 In version 1:
EMBSZoneInfoItem ::= SEQUENCE {

embsZoneID BIT STRING (SIZE(7)),
newEMBSZoneID BIT STRING (SIZE(7)) OPTIONAL,
physicalCarrierIndex INTEGER (0..63),
...

}

 In version 2:
EMBSZoneInfoItem ::= SEQUENCE {

embsZoneID BIT STRING (SIZE(7)),
newEMBSZoneID BIT STRING (SIZE(7)) OPTIONAL,
physicalCarrierIndex INTEGER (0..63),
...,
bitmapAndServiceFlowInfo BitmapAndSfInfo

}

Extensibility
 Extensible choice types:

 In version 1:
mode CHOICE {

hoCmd HandoverCommand,
...

}

 In version 2:
mode CHOICE {

hoCmd HandoverCommand,
...,
zsCmd ZoneSwitchCommand,
hoReject NULL

}

Boolean types
PER encoding summary

 In PER Unaligned, a component whose type is a boolean
type is encoded as follows:
 the value FALSE is encoded as a single ‘0’ bit
 the value TRUE is encoded as a single ‘1’ bit

Integer types
PER encoding summary

 In PER Unaligned, a component whose type is an integer
type (with no extension marker) is encoded as follows:
 If the integer type has a finite lower bound and a finite upper

bound, then the lower bound is subtracted from the value, and
the difference is encoded into the minimum number of bits
capable of expressing the largest such difference

 Otherwise, the value is encoded into a variable number of
octets, preceded by a length prefix which is usually a single
octet

Enumerated types
PER encoding summary

 In PER Unaligned, a component whose type is an
enumerated type (with no extension marker) is encoded
as follows:
 If the names in the definition of the enumerated type have

numbers associated with them, they are reordered according to
those numbers

 An index, starting from zero and increasing by one, is assigned
to each name in order

 The index of the name that is the value of the enumerated type
is encoded into the minimum number of bits capable of
expressing the largest such index (possibly zero bits)

Bit string types
PER encoding summary

 In PER Unaligned, a component whose type is a bit
string type (with no extension marker) is encoded as
follows:
 If the bit string type has a fixed length that is less than 65536,

then the bits of the string are encoded without any length prefix
 If the bit string type has a variable length and the length’s upper

bound is less than 65536, then the length’s lower bound is
subtracted from the length of the string, and the difference is
encoded into the minimum number of bits capable of expressing
the largest possible such difference; the bits of the string will
follow this prefix

 In other cases, the bit string is encoded into one or more
fragments; each fragment (or the only fragment) will contain at
most 65536 bits and will be preceded by a length prefix encoded
in a special way

Octet string types
PER encoding summary

 In PER Unaligned, a component whose type is an octet
string type (with no extension marker) is encoded as
follows:
 If the octet string type has a fixed length that is less than

65536, then the octets of the string are encoded without any
length prefix

 If the octet string type has a variable length and the length’s
upper bound is less than 65536, then the length’s lower bound is
subtracted from the length of the string, and the difference is
encoded into the minimum number of bits capable of expressing
the largest possible such difference; the octets of the string will
follow this prefix

 In other cases, the octet string is encoded into one or more
fragments; each fragment (or the only fragment) will contain at
most 65536 octets and will be preceded by a length prefix
encoded in a special way

Sequence types
PER encoding summary

 In PER Unaligned, a component whose type is a
sequence type (with no extension marker) is encoded as
follows:
1. A bitmap is added that has one bit for each component of the

sequence type that is declared as OPTIONAL or DEFAULT.
Each bit of the bitmap indicates whether the corresponding
component is present

2. Each component of the sequence type is encoded (in textual
order). Any optional component that is not present in the
value of the sequence type is just skipped.

Choice types
PER encoding summary

 In PER Unaligned, a component whose type is a choice
type (with no extension marker) is encoded as follows:
1. An index, starting from zero and increasing by one, is assigned

to each alternative of the choice type
2. The index of the chosen alternative is encoded into the

minimum number of bits capable of expressing the largest
possible such index (possibly zero bits)

3. The chosen alternative of the choice type is encoded

Sequence-of types
PER encoding summary

 In PER Unaligned, a component whose type is a
sequence-of type (with no extension marker) is encoded
as follows:
 If the sequence-of type has a fixed length that is less than

65536, then the components of the sequence-of value are
encoded without any length prefix

 If the sequence-of type has a variable length and the length’s
upper bound is less than 65536, then the length’s lower bound is
subtracted from the length of the sequence-of value, and the
difference is encoded into the minimum number of bits capable
of expressing the largest possible such difference; the
components of the sequence-of are encoded after this prefix

 In other cases, the sequence-of is encoded into one or more
fragments; each fragment (or the only fragment) will contain at
most 65536 components and will be preceded by a length prefix
encoded in a special way

Null types
PER encoding summary

 In PER Unaligned, a component whose type is a null
type is not encoded

Extensibility
PER encoding summary

 In PER Unaligned, the encodings of types that include an
extension marker are modified as follows (1/4):
 An extension bit is included before the first bit of the encoding of

the value, indicating whether the value being encoded is a “root”
value or an “extension addition” value

 Aside from the presence of the extension bit, root values are
encoded exactly as if the type were non-extensible

 The encoding of extension values is often less compact than the
encoding of root values, but the rules ensure that any extension
values that may be legally added to the type definition in a
future version will be encodable

Extensibility
PER encoding summary

 In PER Unaligned, the encodings of types that include an
extension marker are modified as follows (2/4):
 For an extensible integer type, if the value is outside the bounds

of the root, the value is encoded in a way that can represent any
integer with no bounds

 For an extensible enumerated type, if the chosen enumeration is
beyond the last root enumeration, the enumeration index is
encoded in a way that can represent any non-negative integer
with no upper bound

 For an extensible bit string, octet string, or sequence-of type, if
the length of the value exceeds the upper bound of the root
length, the length is encoded in a way that can represent any
non-negative integer with no upper bound

Extensibility
PER encoding summary

 In PER Unaligned, the encodings of sequence types that
include an extension marker are modified as follows:
 Each extension addition is separately “wrapped” in a structure

very similar to a variable-length octet string
 A bitmap is included before the first extension addition,

indicating which extension additions (defined in a later version)
are present

 The length prefix of the wrapper allows an earlier-version
implementation to skip over the encodings of any extension
additions it does not understand

Extensibility
PER encoding summary

 In PER Unaligned, the encodings of choice types that
include an extension marker are modified as follows:
 If the chosen alternative is beyond the last root alternative, the

choice index is encoded in a way that can represent any non-
negative integer with no upper bound

 The encoding of an extension alternative is “wrapped” in a
structure very similar to a variable-length octet string

 The length prefix of the wrapper allows an earlier-version
implementation to skip over the encoding of an extension
alternative it does not understand

Thank you!

Alessandro Triglia
sandro@oss.com
OSS Nokalva, Inc.

